Lower bounds for non-convex stochastic optimization
نویسندگان
چکیده
We lower bound the complexity of finding $$\epsilon $$ -stationary points (with gradient norm at most ) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased oracle with bounded variance, we prove that (in worst case) any algorithm requires least ^{-4}$$ find point. The is tight, and establishes descent minimax optimal in this model. more restrictive noisy estimates satisfy mean-squared smoothness property, ^{-3}$$ queries, establishing optimality recently proposed variance reduction techniques.
منابع مشابه
Lower Bounds for Convex Optimization with Stochastic Oracles
We first formalize stochastic optimization in the oracle-versus-optimizer paradigm (Nemirovski and Yudin, 1983) in Section 1, and then sketch the state-of-the-art upper and lower bounds for the rate of convergence (Agarwal et al., 2009) in Section 2. Intuitively, they show that there exists a firstorder stochastic oracle (which returns a noisy version of the gradient with zero mean and bounded ...
متن کاملLower Bounds for Higher-Order Convex Optimization
State-of-the-art methods in convex and non-convex optimization employ higher-order derivative information, either implicitly or explicitly. We explore the limitations of higher-order optimization and prove that even for convex optimization, a polynomial dependence on the approximation guarantee and higher-order smoothness parameters is necessary. As a special case, we show Nesterov’s accelerate...
متن کاملStochastic Successive Convex Approximation for Non-Convex Constrained Stochastic Optimization
This paper proposes a constrained stochastic successive convex approximation (CSSCA) algorithm to find a stationary point for a general non-convex stochastic optimization problem, whose objective and constraint functions are nonconvex and involve expectations over random states. The existing methods for non-convex stochastic optimization, such as the stochastic (average) gradient and stochastic...
متن کاملAlgorithms and matching lower bounds for approximately-convex optimization
In recent years, a rapidly increasing number of applications in practice requires optimizing non-convex objectives, like training neural networks, learning graphical models, maximum likelihood estimation. Though simple heuristics such as gradient descent with very few modifications tend to work well, theoretical understanding is very weak. We consider possibly the most natural class of non-conv...
متن کاملOn Lower Complexity Bounds for Large-Scale Smooth Convex Optimization
We derive lower bounds on the black-box oracle complexity of large-scale smooth convex minimization problems, with emphasis on minimizing smooth (with Hölder continuous, with a given exponent and constant, gradient) convex functions over high-dimensional ‖ · ‖p-balls, 1 ≤ p ≤ ∞. Our bounds turn out to be tight (up to logarithmic in the design dimension factors), and can be viewed as a substanti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2022
ISSN: ['0025-5610', '1436-4646']
DOI: https://doi.org/10.1007/s10107-022-01822-7